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bstract

The paper deals with the problem of timed state space generation and exploration in the frame of simulation–optimization
pproach for discrete-event systems. Coloured Petri net representation of a system is considered and corresponding techniques
f timed state space generation and timed simulation are addressed. It is shown that the established simulation techniques do not
erform adequately in some application relevant examples since in general, only a subset of a timed state space of a simulated
ystem is represented. Two examples are provided to illustrate the effect of timed state space reduction. While the optimal solution
s preserved within the reduced state space in one example, in the second example this is not the case and the optimum is missed.
his indicates that the timed simulation technique has to be carefully designed in order to be suitable for the simulation–optimization
pproach.

2010 IMACS. Published by Elsevier B.V. All rights reserved.
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. Introduction

The quest for increased productivity, flexibility and competitiveness in present manufacturing industries, has forced
ew production policies to improve the customer quality of service which consider not only the quality and the price
f the final product, but also time-to-market aspects. Modelling and performance evaluation play a vital role in the
perational decision making activity, to deal with the best configuration to satisfy customer orders. Unfortunately, the
equired flexibility to improve the key performance indicators leads to a considerable amount of decision variables
Please cite this article in press as: M.A. Piera, G. Mušič, Coloured Petri net scheduling models: Timed state space exploration
shortages, Math. Comput. Simul. (2010), doi:10.1016/j.matcom.2010.10.014

hat must be properly evaluated in order to deal with the best possible operation scenarios. The role of performance
odeling is to aid the decision making in an effective way.
Coloured Petri nets (CPNs) are a powerful framework for discrete-event modelling, simulation and analysis. In

ontrast to most system description languages, CPNs are state and action oriented at the same time—providing an
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explicit description of both the states and the actions [4]. Advantages of ordinary Petri nets, such as efficient modelling
of concurrency and synchronization, and simple representation of production systems’ specific properties, such as
conflicts, deadlocks, limited buffer sizes, and finite resource constraints [9,10], are enhanced by a compact representation
of the model and the underlying state space by the use of coloured tokens and hierarchy. Furthermore, a functional
programming language CPN ML is added, which is used for the net inscriptions, i.e., text strings attached to the places,
transitions and arcs of a CPN. This way various declarations are made and the language also facilitates modelling of
data manipulation that is triggered by event occurrences. CPNs have been applied in a wide range of application areas,
and many projects have been carried out in industry.

In order CPN models could help in making decisions related to finding the best routes, predicting the effects of adding
or withdrawing resources and parts, or obtaining optimal schedules, it is necessary to consider the time aspects of each
activity. A rich variety of extensions of the original PN and CPN formalism include the time concept, considering both
deterministic and stochastic time [11]. In this way PNs and CPNs can be applied for simulation-based performance
analysis, i.e., timed simulation can be performed for testing the performance of the system under certain operating
conditions.

The ability of performance measures shows the possibility to use CPN models within the simulation–optimization
approach as a tool to solve real industrial scheduling problems. Within this approach, an optimization algorithm can
be used to arrange the simulation of a sequence of system configurations so that an optimal or near optimal system
configuration could eventually be obtained [7,8].

In order to be able to reach the optimum, it is important to be able to generate any possible trace of the system
behaviour. It can be observed that in most of the discrete-event simulation tools this is not always the case. They are
generally able to represent only a subset of timed state space of a simulated system. The paper deals with the critical
evaluation of the timed state space generation strategies found in DES simulators. In particular CPN framework and
the related time mechanisms are studied.

The remainder of the paper is structured as follows. The timed state space exploration techniques are introduced
in Section 2. The application of the presented techniques to optimization of schedules is described in Section 3. A
simple manufacturing example is presented, where the differences in the timed state space exploration techniques are
examined. Another example is given in Section 4 to illustrate the effect of timed state space exploration technique
when searching for a solution to a scheduling problem.

2. Timed state space exploration

For simplicity, a place/transition (P/T) timed Petri net will be considered in the following. It can be described as a
bipartite graph consisting of two types of nodes, places and transitions. The nodes are interconnected by directed arcs.
The state of the system is denoted by the distribution of tokens (called marking) over the places. Compared to CPN,
no token colours nor arc inscriptions other than weight are used, and transition inscriptions are limited to specification
of time delay only. This allows more focused presentation of time aspects while the mechanism of time inclusion
is kept as close as possible to the one of CPNs. This enables a straightforward extension of presented concepts to
CPNs.

The concept of time is not explicitly given in the original definition of Petri nets. As described in [3], there are three
basic ways of representing time in Petri nets: firing durations (FD), holding durations (HD) and enabling durations (ED).
The FD principle says that when a transition becomes enabled it removes the tokens from input places immediately but
does not create output tokens until the firing duration has elapsed. In [12] a well-defined description of this principle
is given. When using HD principle, a firing has no duration but a created token is considered unavailable for the time
assigned to transition that created the token. The unavailable token cannot enable a transition and therefore causes a
delay in the subsequent transition firings. This principle is graphically represented in Fig. 1, where the available tokens
are schematized with the corresponding number of undistinguishable (black) tokens and the unavailable tokens are
indicated by empty circles. The time assigned to a transition is written beside the transition, e.g., d1 is assigned to
transition t . When the time is 0 this denotation is omitted. In Fig. 1, τ denotes a model time represented by a global
Please cite this article in press as: M.A. Piera, G. Mušič, Coloured Petri net scheduling models: Timed state space exploration
shortages, Math. Comput. Simul. (2010), doi:10.1016/j.matcom.2010.10.014

1
clock and τf denotes the firing time of a transition.

HD and FD are in fact the same way of representing time while ED principle leads to a different timed behaviour
of a model. With ED, the firing of the transitions has no duration while the time delays are represented by forcing
transitions that are enabled to stay so for a specified period of time before they can fire. The main difference between

dx.doi.org/10.1016/j.matcom.2010.10.014
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Fig. 1. Timed Petri net with holding durations.

sing HD and ED can be seen in a Petri net where a conflict appears. In this case more transitions are enabled by one
arking. When ED policy is used, the firing of one transition can interrupt the enabling of other transitions, as the
arking, which has enabled previous situation, has changed [3].
This indicates that ED concept is more general than HD. Furthermore, in [6] an even more general concept is used,

hich assigns delays to individual arcs, either inputs or outputs of a transition. This way both ED and HD concepts are
overed, and the enabling delay may even depend on the source of transition triggering while holding delay may differ
mong different activities started by the same transition. This paper builds on some ideas presented in [6] although
hey are used in a different context. While the primary focus in [6] is on a development of a decentralized timed state
pace generation approach, here the formalization is simplified and the focus is on the practical implications of using
arious types of timed state spaces.

When modelling several performance optimization problems, e.g., scheduling problems, such a general framework
s presented in [6] is not needed. It is natural to use HD when modelling most scheduling processes as transitions
epresent starting of operations, and generally once an operation starts it does not stop to allow another operation
o start in between. HD principle is also used in timed version of CPNs, although the unavailability of the tokens is
nly defined implicitly through the corresponding time stamps. While CPNs allow the assignment of delays both to
ransition and to output arcs, we further simplify this by allowing time delay inscriptions to transitions only. This is
ufficient for the type of examples investigated here, and can be generalized if necessary.

.1. P/T timed Petri net with holding durations

To include a time attribute of the marking tokens, which implicitly defines their availability and unavailability, the
otation of [4] will be adopted. Tokens are accompanied with a timestamp, which is written next to the token number
nd separated from the number by @. E.g., two tokens with time stamp 10 are denoted 2@10. A collection of tokens
ith different time stamps is defined as a multiset, and written as a sum (union) of sets of timestamped tokens. E.g.,

wo tokens with time stamp 10 and three tokens with timestamp 12 are written as 2@10+3@12. The timestamp of a
oken defines the time from which the token is available.

Time stamps are elements of a time set TS, which is defined as a set of numeric values. In many software implemen-
ations the time values are integer, i.e., TS = N, but will be here admitted to take any positive real value including 0,
.e., TS = R+

0 . Timed markings are represented as collections of time stamps and are multisets over TS: TSMS. By using
D principle the formal representation of a P/T timed Petri net is defined as follows. TPN = (N, M0) is a timed Petri
et system, where: N = (P, T, I, O, f ) is a Timed Petri net structure, P = {p1, p2, . . ., pk}, k > 0 is a finite set of places,
= {t1, t2, . . ., tl}, l > 0 is a finite set of transitions (with P ∪ T /= ∅ and P ∩ T =∅), I : (P × T ) → N is the input arc

unction. If there exists an arc with weight k connecting p to t, then I(p, t) = k, otherwise I(p, t) = 0. O : (P × T ) → N
s the output arc function. If there exists an arc with weight k connecting t to p, then O(p, t) = k, otherwise O(p, t) = 0.
: T → TS is the function that assigns a non-negative deterministic time delay to every t ∈ T. M : P → TSMS is the timed
arking, M0 is the initial marking of a timed Petri net.
Functions I and O define the weights of directed arcs, which are represented by arc inscriptions. In the case when

he weight is 1, this annotation is omitted, and in the case when the weight is 0, the arc is omitted. Let • t ⊆ P denote
he set of places which are inputs to transition t ∈ T, i.e., there exists an arc from every p ∈ • t to t.

To determine the availability and unavailability of tokens, two functions on the set of markings are defined. The set
Please cite this article in press as: M.A. Piera, G. Mušič, Coloured Petri net scheduling models: Timed state space exploration
shortages, Math. Comput. Simul. (2010), doi:10.1016/j.matcom.2010.10.014

f markings is denoted byM. Given a marking and model time, m : P ×M× TS → N defines the number of available
okens, and n : P ×M× TS → N the number of unavailable tokens for each place of a TPN at a given time τk. Note
hat model time also belongs to time set TS, τk ∈ TS.

dx.doi.org/10.1016/j.matcom.2010.10.014
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4 M.A. Piera, G. Mušič / Mathematics and Computers in Simulation xxx (2010) xxx–xxx

Two timed markings can be added (denoted +τ) in a similar way as multisets, i.e., by making a union of the
corresponding multisets. The definition of subtraction is somewhat more problematic. To start with, a comparison
operator is defined. Let M1 and M2 be markings of a place p ∈ P. By definition, M1 ≥ τM2 iff m(p, M1, τk) ≥ m(p, M2,
τk), ∀ τk ∈ TS.

Similarly, the subtraction is defined by the number of available tokens, and the subtrahend should not contain any
unavailable tokens. Let M1, M2 and M3 be markings of a place p ∈ P, M1 ≥ τM2, and m(p, M1, τk), m(p, M2, τk),
and m(p, M3, τk), be the corresponding numbers of available tokens at time τk, and n(p, M2, τk) = 0. The difference
M3 = M1 − τM2 is then defined as any M3 ∈M having m(p, M3, τk) = m(p, M1, τk) − m(p, M2, τk).

Clearly, the subtraction is not uniquely defined this way, since it is not clear, which of the available tokens, eventually
having different timestamps, will be removed from the minuend. However, the subtraction is only used to define removal
of tokens from input places when a transition is fired. If the HD principle is used and there are several available tokens
in an input place with different timestamps, it is not important which of them is removed. All the subsequent transition
firings only deal with present or future points in time, and all currently available tokens remain available for the eventual
enablement of future firings. The situation would be changed, of course, if the ED timing principle was used, since
there also the past is important for the enablement of transitions. For such a case, the subtraction operator is defined
more generally in [6].

Even when applying HD principle, it can however be practical to uniquely define the subtraction operation on timed
markings. In this paper the comparison of each newly generated marking to all previously reached markings is applied
when generating timed state space. This is simplified if the new markings are always generated in the same way, e.g.,
by always removing the token with the most recent timestamp first.

Using the above definitions, the firing rule of a TPN can be defined. Given a marked TPN = (N, M), a transition
t is time enabled at time τk, denoted M[t〉τk

iff m(p, M, τk) ≥ I(p, t), ∀ p ∈•t. An enabled transition can fire, and as a
result removes tokens from input places and creates tokens in output places. If transition t fires, then a new marking
is given by M′(p) = M(p) − τI(p, t)@τk + τO(p, t)@(τk + f(t)), ∀ p ∈ P. If marking M2 is reached from M1 by firing t at
time τk, this is denoted by M1[t〉τk

M2. The set of markings of TPN N reachable from M is denoted by R(N, M).

2.2. Classes of timed state spaces

In the definition of the firing rule of a TPN, the enabled transition is described as a transition that can fire. This is a
common definition of the firing rule in the Petri net literature. Nothing is said about the exact moment of firing. In the
timed state space generation, time of the firing is a key attribute. Depending on a more detailed definition of the time
of transition firing one can distinguish among several classes of timed state spaces.

Most general timed state space [6] is TSS = (N, A), where N = R(N, M0) is a node set and A is the set of arcs given
as A = ⋃

M ∈ N{(M, t, M ′)τk
|M[t〉τk

M ′}. In such a TSS a firing M[t〉τk
M ′ is not tied to any specific firing time τk. This

can be any time greater or equal to τ0 when transition becomes enabled.
To better define the firing time it may be required that a transition fires at the earliest possible time.

This way an earliest time state space is defined: ESS = (N, A), where N = R(N, M0) and A is given as A =⋃
M ∈ N{(M, t, M ′)τk

|M[t〉τk
M ′,�τ1 < τk, : M[t〉τ1

}.
In ESS a firing M[t〉τk

M ′ is tied to the earliest firing time at a given marking. But this does not prevent the inclusion
of other transitions from the same marking into the ESS, which become enabled and fire at later times. E.g., if two
transitions t1 and t2 are in conflict and t1 is enabled before t2, also t2 participates in the ESS.

The above definitions of TSS and ESS are somewhat anomalous, since only the time of transition enablement is
considered, while the time when a certain marking is reached is not taken into account. In certain situations this allows
subsequent firings to occur in TSS or ESS at a time smaller than the time of the last firing.

For example, consider the net in Fig. 2. Places p1 and p2 are marked by a token each, but with different timestamps.
Transitions t1 and t2 have time delay 2 and 1, respectively, which is denoted beside transitions using standard CPN
notation (@ + delay). Transition t1 is enabled before t2 but nevertheless, according to the above definition of ESS, both
firing sequences are considered: t , t and t , t . Furthermore, from the marking M obtained after firing t at a time
Please cite this article in press as: M.A. Piera, G. Mušič, Coloured Petri net scheduling models: Timed state space exploration
shortages, Math. Comput. Simul. (2010), doi:10.1016/j.matcom.2010.10.014

1 2 2 1 2 2
τ21 = 5, t1 can be fired at time τ12 = 2, i.e., τ12 < τ21. A corresponding part of the state transition diagram of ESS is
shown in Fig. 3a.

To avoid such anomalies, the definition of TSS and ESS is changed in a way that a marking creation time is adjoined
to every node of the state space.

dx.doi.org/10.1016/j.matcom.2010.10.014
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Fig. 2. Example of a timed Petri net.

The node set of TSS is then N ⊂ R(N, M0) × TS, and Ni = (Mi, τi), where τi is the time when the last transition in a
equence leading from M0 to Mi was fired. The corresponding arc set isA = ⋃

Nj ∈ N{(Nj, t, Nk)
τk

|Nj = (Mj, τj), Nk =
Mk, τk), Mj[t〉τk

Mk}. When exploring further evolution from the marking Mj, in contrast to [6], the creation time τj

f Mj is taken into account. Therefore τk can be any time greater or equal to τ0 when transition becomes enabled, and
0 itself must be greater or equal to τj: τk ≥ τ0 ≥ τj, M[t〉τ0

,�τ1 : τj ≤ τ1 < τ0, M[t〉τ1
.

Similarly, the ESS is redefined as ESS = (N, A), where N ⊂ R(N, M0) × TS and A is given as A =
Nj ∈ N{(Nj, t, Nk)

τk
|Nj = (Mj, τj), Nk = (Mk, τk), Mj[t〉τk

Mk,�τ1 : τj ≤ τ1 < τk, M[t〉τ1
}.

For the net in Fig. 2 this results in a different ESS. Part of the corresponding state transition diagram is shown in
ig. 3b. Clearly, the nodes N3 and N4 are not equivalent.

The possibility that two transitions in conflict, which are enabled at different times both participate in the timed
tate space generation is eliminated by reduced earliest time state space RSS. This class of timed state space only
llows the inclusion of transitions in conflict that can fire at the same time. It is defined as RSS = (N, A), where
⊂ R(N, M0) × TS and A is given as A = ⋃

Nj ∈ N{(Nj, t, Nk)
τk

|Nj = (Mj, τj), Nk = (Mk, τk), Mj[t〉τk
Mk,�t1, τ1 :

j ≤ τ1 < τk, M[t1〉τ1
}.

For a P/T timed Petri net the three classes of time state spaces are related as follows: RSS ⊆ ESS ⊂ TSS. E.g., the
SS for the net in Fig. 2 results in a subgraph of ESS in Fig. 3b, where only the nodes N0, N1 and N3 are included.
Please cite this article in press as: M.A. Piera, G. Mušič, Coloured Petri net scheduling models: Timed state space exploration
shortages, Math. Comput. Simul. (2010), doi:10.1016/j.matcom.2010.10.014

Most of the timed state space generating algorithms found in various software tools actually generate RSS. An
xample is CPN Tools software [1,5].

Next, algorithms for ESS and RSS generation are briefly sketched. For simplicity, the algorithms will be presented
or P/T timed Petri nets only. The extension to CPNs is straightforward.

Fig. 3. Two possible ESSs of the example.

dx.doi.org/10.1016/j.matcom.2010.10.014
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Algorithm 1. ESS generation

set(max time);
ESS.N:={(M0, 0)};
ESS.A:=∅;
U:={(M0, 0)};
τ:=0;
while U /= ∅ do

for all N ∈ U do
τ:= creation time(N);
M:= marking(N);
repeat

for all t ∈ T : M[t〉τM ′ ∧ �τ′ < τ : M[t〉τ′ do
N ′:=(M ′, τ);
if N ′ /∈ ESS.N then

ESS.N:= ESS.N ∪ {N ′};
U:=U ∪ {N ′};

end if
ESS.A:= ESS.A ∪ {(N, t, N ′)τ};

end for
τ:=next time hit(τ, M);

until n(p, M, τ) = 0, ∀p ∈ P
∨

τ > max time

U:=U − {N};
end for

end while

The algorithm for generating ESS is shown in Algorithm 1. It is assumed that reached markings are stored
with an additional attribute, i.e., the time of their occurrence. When comparing a new node to previously gen-
erated nodes of the state space, this attribute is also taken into account, i.e., two identical marking that were
reached at different times belong to different nodes. Such an implementation is used in order to be able to dis-
tinguish behaviours that produce the same event (sub)sequence at different times. The function “creation time(N)”
returns a value of this attribute associated with node N while the function “marking(N)” returns the corre-
sponding marking. The function “next time hit(τ, M)” returns the value of the lowest timestamp value in M
greater than τ. Parameter max time is used to define a time limit beyond which the transition firings are not
explored.

The algorithm for generating RSS is shown in Algorithm 2. It differs in the way unavailable tokens are treated at
Please cite this article in press as: M.A. Piera, G. Mušič, Coloured Petri net scheduling models: Timed state space exploration
shortages, Math. Comput. Simul. (2010), doi:10.1016/j.matcom.2010.10.014

the currently processed marking. The time is not incremented to wait for the tokens to become available at this point,
but only after all the markings reachable in one step are determined. This way only the earliest transition(s) fireable
from a given marking are kept. To enable this, the domain of function “next time hit(τ, M)” is extended from a single
marking to the whole set of timestamps included in the set of markings related to unexplored nodes U.

dx.doi.org/10.1016/j.matcom.2010.10.014
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lgorithm 2. RSS generation

et(max time);
SS.N:={(M0, 0)};
SS.A:=∅;
:={(M0, 0)};

:=0;
hile U /= ∅ ∧ τ ≤ max time do
repeat

U ′:=U;
for all N ∈ U do

M:= marking(N);
for all t ∈ T : M[t〉τM ′do

N ′:=(M ′, τ);
if N ′ /∈ RSS.N then

RSS.N:= RSS.N∪{N ′};
U:=U∪{N ′};

end if
RSS.A:=RSS.A∪{(N, t, N ′)τ};
U:=U − {N};

end for
end for

until U = U ′
τ:= next time hit(τ, U);

nd while

Simulation can be regarded as an exploration of a single path in the timed state space of the model. Most of the
vailable simulation packages for TPNs or CPNs are based on RSS generation principle. Of course only one transition
s chosen to fire at every simulation step. Clearly, this rules out some of the possible paths in the timed state space.

hen using simulation for performance optimization, this may cause the obtained solutions being not optimal. This
ill be demonstrated by examples in the following sections.

. RSS policy applied to a scheduling problem

A well known job shop scheduling problem (JSSP), will be used to illustrate the shortages of using RSS policy for
cheduling purposes. To solve a JSSP means to schedule a group of jobs in a set of machines, subject to the restriction
hat each machine can process only one job at a time and each job has an order of processing specified in each machine,
nd the JSSP belongs to a class of NP-hard problems.

There is a high number of predefined problem instances for different numbers of jobs and machines [2], which
re usually considered by the optimization community as benchmark problems to test algorithms and combinatorial
ptimization methods in which the main goal is to minimize the time of completion of all jobs (makespan).

Recently, the JSSP has also been used by the simulation community to test simulation–optimization approach in
hich random variables are used to specify the different operation times. In [8] a state space exploration algorithm to

ackle the state space explosion by means of heuristics and deal with the optimal solution is presented.
To illustrate the RSS policy shortages, a job shop production system with two machines and two jobs will be

onsidered. Fig. 4 illustrates graphically the system in which Job 1 is represented by a ring and Job 2 is represented by
cylinder (transport subsystems are not considered relevant to the problem).

The machine sequence of each job is known (see Table 1), and each machine can serve only one job simultaneously.
Fig. 5 illustrates the Petri Net model, in which: Transition T1 is used to describe machine M1 processing Job

. Transition T2 is used to describe machine M1 processing Job 2. Transition T3 is used to describe machine M2
rocessing Job 1. Transition T4 is used to describe machine M2 processing Job 2. Place M1 is used to describe
Please cite this article in press as: M.A. Piera, G. Mušič, Coloured Petri net scheduling models: Timed state space exploration
shortages, Math. Comput. Simul. (2010), doi:10.1016/j.matcom.2010.10.014

achine M1 free. Place M2 is used to describe machine M2 free. Place J1O1 is used to describe Job 1 waiting for the
rst operation in machine M1. Place J1O2 is used to describe Job 1 waiting for the second operation in machine M2.
lace J2O1 is used to describe Job 2 waiting for the first operation in machine M2. Place J2O2 is used to describe Job
waiting for the second operation in machine M1. Place Prod is used to represent the processed jobs.

dx.doi.org/10.1016/j.matcom.2010.10.014


Please cite this article in press as: M.A. Piera, G. Mušič, Coloured Petri net scheduling models: Timed state space exploration
shortages, Math. Comput. Simul. (2010), doi:10.1016/j.matcom.2010.10.014

ARTICLE IN PRESS+Model
MATCOM-3546; No. of Pages 14
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Fig. 4. Job shop 2×2.

Table 1
Machine sequence.

Job 1 Job 2

Machine Operation time Machine Operation time

1 3 2 3
2 6 1 3

T2

T3 T4

T1

J1O1 M1

J1O2

Prod

J2O2

M2 J2O1

@+3
@+3

@+6 @+3

Fig. 5. Petri Net model for the 2×2 job shop problem.

dx.doi.org/10.1016/j.matcom.2010.10.014
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Fig. 6. State space (ESS) for the 2×2 job shop problem.
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Fig. 7. RSS for the 2× 2 job shop problem.

According to the discrete event system representation proposed for the given job shop, the different plans to process
the two jobs can be found in the state space graph (ESS) represented in Fig. 6 (nodes M4 and M5 are merged because
they are equivalent, similarly M12 ≡ M13). Node M0 represents the initial marking, and nodes M11, M12 = M13 and
M14 represent the final markings in which both jobs have been processed. As it can be easily seen, both jobs could
be processed in 9 time units (node M12 = M13) by taking the advantage that machine M1 and M2 can work in parallel
(consider for example sequence T1, T4, T3, T2). However, a bad planning policy could lead a make-span of 15 time
units (nodes M11, M14) in which all operations are performed sequentially (consider for example sequence T1, T3,
T4, T2). In case a RSS policy would be used to analyze the state space of the given job shop system, marking M3
would not be reachable from marking M1. In a similar way, marking M6 would not be reachable from marking M2.
Fig. 7 illustrates the corresponding RSS graph obtained by means of CPN tools software.

The node inscriptions in the state space graph within CPN Tools consist of a node number followed by a number of
parent nodes and a number of child nodes. Next to the nodes are the node descriptors where the corresponding place
Please cite this article in press as: M.A. Piera, G. Mušič, Coloured Petri net scheduling models: Timed state space exploration
shortages, Math. Comput. Simul. (2010), doi:10.1016/j.matcom.2010.10.014

markings are shown in the form 〈 Page name〉′〈 Place name〉 Instance: Marking. In the example shown in Fig. 7 the
CPN was drawn in a page named JS2×2 and the place names are shown in Fig. 5. The place markings are written in
a standard CPN notation as explained in Section 2.1. Next to the arcs are placed the arc descriptors showing the arc
number, source and destination nodes and related transition.

dx.doi.org/10.1016/j.matcom.2010.10.014
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Fig. 8. Gantt representation of transition sequences 1–4.

Fig. 8 illustrates the related Gantt representation of the schedule obtained by firing the transition sequences: Sequence
: T4, T1, T3, T2 Sequence 2: T1, T4, T3, T2 Sequence 3: T4, T1, T2, T3 Sequence 4: T1, T4, T2, T3

All four sequences can be observed both using the ESS and the RSS policies. However, there are also some
ndesirable sequences (sequences 5 and 6) that could lead the production system to poor make-span, but can not be
nalyzed using the RSS policy because there is at least one time-enabled event that prevents to update the clock to the
ext colour-enabled event. Fig. 9 illustrates the Gantt representation of sequence 5: T1, T3, T4, T2.
Please cite this article in press as: M.A. Piera, G. Mušič, Coloured Petri net scheduling models: Timed state space exploration
shortages, Math. Comput. Simul. (2010), doi:10.1016/j.matcom.2010.10.014

Fig. 9. Gantt representation of transition sequence 5.

Fig. 10. Different performance production subsystems.

dx.doi.org/10.1016/j.matcom.2010.10.014
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Fig. 11. Petri net of the production system.

4. Some shortages of RSS policy in the frame of simulation–optimization approach

The basic idea underlying the use of CPN models for performance analysis by means of dynamic generation of the
states space, is to translate a problem of planning, scheduling or routing into a search problem in the states space of
the system. An academical scheduling problem is presented in this section to show up that the RSS policy cannot be
used to guarantee optimality because some states are missed.

Fig. 10 illustrates a production system with a stock of raw material and two machines (transport subsystems dynamics
are neglected) with the same characteristics but with different performances: Machine M2 is an old generation machine
Please cite this article in press as: M.A. Piera, G. Mušič, Coloured Petri net scheduling models: Timed state space exploration
shortages, Math. Comput. Simul. (2010), doi:10.1016/j.matcom.2010.10.014

that still works but with a rate 3/10th of a new CNC machine (M1). The problem is in establishing the optimal schedule
to process 3 details using 2 machines (M1 and M2) in which the processing time of a detail in machine M1 is 3 time
units while the processing time in machine M2 is 10 time units.
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Fig. 12. State space (ESS) for the production system.
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Fig. 13. RSS for the production system.

Fig. 14. Gantt representation of optimal sequences applying ESS and RSS policies.

dx.doi.org/10.1016/j.matcom.2010.10.014


+Model

[

[
[

ARTICLE IN PRESSMATCOM-3546; No. of Pages 14
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Fig. 11 illustrates the Petri net model of the production system in which transition T1 represents machine M1
processing a detail while transition T2 represents machine M2 processing a detail.

Fig. 12 illustrates the state space (ESS) of the system in which it is easy to note that the optimal policy would assign
the whole workload to machine M1 (sequence T1, T1, T1) obtaining a make-span of 9 time units (marking M7), while
the worst policy requires 30 time units (marking M14) which is obtained by assigning the whole workload to machine
M2 (sequence T2, T2, T2).

As it can be checked in Fig. 13, the use of reduced earliest time state space algorithms to analyze the state space of
a CPN model, only can result in a policy that requires 10 time units to process the 3 details.

Fig. 14 shows in the lower part the Gantt representation of an optimal sequence that can not be reached using the
RSS policy because transition T2 is enabled at time 0. In the upper part of the figure, the best feasible sequence that
can be obtained using the RSS policy is illustrated also using a Gantt representation.

5. Conclusions and future work

When using state space analysis for optimization of discrete-event systems it is important to be able to generate any
possible trace of the system behaviour. Corresponding software tools are often based on the reduced earliest time state
space generation principle, which rules out some of the possible paths in the timed state space. Similarly, discrete event
simulation is based on a similar principle, i.e., the scheduled event list is ordered on a smallest-scheduled-time-first
basis and only the first event in the list occurs in the next simulation step. This way some of the possible behaviour
scenarios are not explored and optimal solution can be missed. A simple illustrating example is presented in this paper.
This indicates that the underlying simulation technique has to be carefully designed in order to be suitable for the
simulation–optimization approach.
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